Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium
نویسندگان
چکیده
BACKGROUND Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. METHODOLOGY/PRINCIPAL FINDINGS Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. CONCLUSIONS/SIGNIFICANCE UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.
منابع مشابه
UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse.
Selective transporters account for rapid urea transport across plasma membranes of several cell types. UT-B1 urea transporter is widely distributed in rat and human tissues. Because mice exhibit high urea turnover and are the preferred species for gene engineering, we have delineated UT-B1 tissue expression in murine tissues. A cDNA was cloned from BALB/c mouse kidney, encoding a polypeptide th...
متن کاملExpression and localization of a UT-B urea transporter in the human bladder.
Facilitative UT-B urea transporters have been shown to play an important role in the urinary concentrating mechanism. Recent studies have now suggested a link between UT-B allelic variation and human bladder cancer risk. UT-B1 protein has been previously identified in the bladder of various mammalian species, but not yet in humans. The aim of the present study was to investigate whether any UT-...
متن کاملHigh urea and creatinine concentrations and urea transporter B in mammalian urinary tract tissues.
Although the mammalian urinary tract is generally held to be solely a transit and storage vehicle for urine made by the kidney, in vivo data suggest reabsorption of urea and other urine constituents across urinary tract epithelia. To determine whether urinary tract tissue concentrations are increased as a result of such reabsorption, we measured urea nitrogen and creatinine concentrations and d...
متن کاملIdentification of a Novel UT-B Urea Transporter in Human Urothelial Cancer
The urea transporter UT-B is widely expressed and has been studied in erythrocyte, kidney, brain and intestines. Interestingly, UT-B gene has been found more abundant in bladder than any other tissue. Recently, gene analyses demonstrate that SLC14A1 (UT-B) gene mutations are associated with bladder cancer, suggesting that urea transporter UT-B may play an important role in bladder carcinogenesi...
متن کاملUrea Transporter Physiology Studied in Knockout Mice
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physi...
متن کامل